What is Sandisk

Sandisk

 

Sandisk was founded in 1988 by Eli Harari, Sanjay Mehrotra and Jack Yuan, incorporated at the time as SunDisk. SanDisk Corporation is an American manufacturer of flash memory products, including memory cards and readers, USB flash drives, and solid state drives. As of February 2015, SanDisk is the third-largest manufacturer of flash memory. On May 12, 2016, SanDisk was acquired by hard drive manufacturer Western Digital in a US$19 billion deal.SanDisk co-founder Eli Harari developed the Floating Gate EEPROM which proved the practicality, reliability and endurance of semiconductor-based data storage. On May 10, 2000 the Toshiba Corporation of Japan and the SanDisk Corporation said that they would jointly form a new semiconductor company to produce advanced flash memory, primarily for digital cameras.

Flash Memory:

 
It is an electronic non-volatile computer storage medium that can be electrically erased and reprogrammed. Toshiba developed flash memory from EEPROM in the early 1980s and introduced it to the market in 1984. The two main types of flash memory are named after the NAND and NOR logic gates. The individual flash memory cells exhibit internal characteristics similar to those of the corresponding gates. While EPROMs had to be completely erased before being rewritten, NAND-type flash memory may be written and read in blocks which are generally much smaller than the entire device. NOR-type flash allows a single machine word (byte) to be written – to an erased location – or read independently. The NAND type operates primarily in memory cards, USB flash drives, solid-state drives, and similar products, for general storage and transfer of data. NAND or NOR flash memory is also often used to store configuration data in numerous digital products, a task previously made possible by EEPROM or battery-powered static RAM. One key disadvantage of flash memory is that it can only endure a relatively small number of write cycles in a specific block. Example applications of both types of flash memory include personal computers, PDAs, digital audio players, digital cameras, mobile phones, synthesizers, video games, scientific instrumentation, industrial robotics, and medical electronics. In addition to being non-volatile, flash memory offers fast read access times, although not as fast as static RAM or ROM. Its mechanical shock resistance helps explain its popularity over hard disks in portable devices, as does its high durability, ability to withstand high pressure, temperature and immersion in water, etc. Although flash memory is technically a type of EEPROM, the term “EEPROM” is generally used to refer specifically to non-flash EEPROM which is erasable in small blocks, typically bytes. Because erase cycles are slow, the large block sizes used in flash memory erasing give it a significant speed advantage over non-flash EEPROM when writing large amounts of data. As of 2013, flash memory costs much less than byte-programmable EEPROM and had become the dominant memory type wherever a system required a significant amount of non-volatile solid-state storage. Flash memory was invented by Fujio Masuoka while working for Toshiba circa 1980. According to Toshiba, the name “flash” was suggested by Masuoka’s colleague, Shōji Ariizumi, because the erasure process of the memory contents reminded him of the flash of a camera.

 

Sandisk

 

Masuoka and colleagues presented the invention at the IEEE 1987 International Electron Devices Meeting (IEDM) held in San Francisco. Intel Corporation introduced the first commercial NOR type flash chip in 1988. NOR-based flash has long erase and write times, but provides full address and data buses, allowing random access to any memory location. This makes it a suitable replacement for older read-only memory (ROM) chips, which are used to store program code that rarely needs to be updated, such as a computer’s BIOS or the firmware of set-top boxes. Its endurance may be from as little as 100 erase cycles for an on-chip flash memory, to a more typical 10,000 or 100,000 erase cycles, up to 1,000,000 erase cycles. NOR-based flash was the basis of early flash-based removable media; CompactFlash was originally based on it, though later cards moved to less expensive NAND flash. NAND flash has reduced erase and write times, and requires less chip area per cell, thus allowing greater storage density and lower cost per bit than NOR flash; it also has up to 10 times the endurance of NOR flash. However, the I/O interface of NAND flash does not provide a random-access external address bus. Rather, data must be read on a block-wise basis, with typical block sizes of hundreds to thousands of bits. In flash memory, each memory cell resembles a standard metal-oxide-semiconductor field-effect transistor (MOSFET) except that the transistor has two gates instead of one. The cells can be seen as an electrical switch in which current flows between two terminals (source and drain) and is controlled by a floating gate (FG) and a control gate (CG). The CG is similar to the gate in other MOS transistors, but below this, there is the FG insulated all around by an oxide layer. The FG is interposed between the CG and the MOSFET channel. Because the FG is electrically isolated by its insulating layer, electrons placed on it are trapped. When the FG is charged with electrons, this charge screens the electric field from the CG, thus, increasing the threshold voltage (VT1) of the cell. This means that now a higher voltage (VT2) must be applied to the CG to make the channel conductive. In order to read a value from the transistor, an intermediate voltage between the threshold voltages (VT1 & VT2) is applied to the CG. If the channel conducts at this intermediate voltage, the FG must be uncharged, and hence, a logical “1” is stored in the gate. If the channel does not conduct at the intermediate voltage, it indicates that the FG is charged, and hence, a logical “0” is stored in the gate. The presence of a logical “0” or “1” is sensed by determining whether there is current flowing through the transistor when the intermediate voltage is asserted on the CG. In a multi-level cell device, which stores more than one bit per cell, the amount of current flow is sensed, in order to determine more precisely the level of charge on the FG. NAND flash also uses floating-gate transistors, but they are connected in a way that resembles a NAND gate: several transistors are connected in series, and the bit line is pulled low only if all the word lines are pulled high. These groups are then connected via some additional transistors to a NOR-style bit line array in the same way that single transistors are linked in NOR flash. Compared to NOR flash, replacing single transistors with serial-linked groups adds an extra level of addressing. Whereas NOR flash might address memory by page then word, NAND flash might address it by page, word and bit. Bit-level addressing suits bit-serial applications, which access only one bit at a time. Execute-in-place applications, on the other hand, require every bit in a word to be accessed simultaneously. This requires word-level addressing. In any case, both bit and word addressing modes are possible with either NOR or NAND flash.To read data, first the desired group is selected. Next, most of the word lines are pulled up above the VT of a programmed bit, while one of them is pulled up to just over the VT of an erased bit. The series group will conduct if the selected bit has not been programmed. Despite the additional transistors, the reduction in ground wires and bit lines allows a denser layout and greater storage capacity per chip. In addition, NAND flash is typically permitted to contain a certain number of faults. Manufacturers try to maximize the amount of usable storage by shrinking the size of the transistors.

Comment PLZ