Explaining The Concept of Wifi Technology

How Wifi Technology Works



Wifi is a technology for radio wireless local area networking of devices based on the IEEE 802.11 standards. Wi‑Fi is a trademark of the Wi-Fi Alliance, which restricts the use of the term Wi-Fi Certified to products that successfully complete interoperability certification testing. Devices that can use Wi-Fi technologies include desktops and laptops, video game consoles, smartphones and tablets, smart TVs, digital audio players and modern printers. Wi-Fi compatible devices can connect to the Internet via a WLAN and a wireless access point. Such an access point (or hotspot) has a range of about 20 meters (66 feet) indoors and a greater range outdoors. Hotspot coverage can be as small as a single room with walls that block radio waves, or as large as many square kilometres achieved by using multiple overlapping access points. In 1971, ALOHAnet connected the Hawaiian Islands with a UHF wireless packet network. ALOHAnet and the ALOHA protocol were early forerunners to Ethernet, and later the IEEE 802.11 protocols, respectively. A 1985 ruling by the U.S. Federal Communications Commission released the ISM band for unlicensed use.These frequency bands are the same ones used by equipment such as microwave ovens and are subject to interference. In 1991, NCR Corporation with AT&T Corporation invented the precursor to 802.11, intended for use in cashier systems, under the name WaveLAN. The Australian radio-astronomer Dr John O’Sullivan with his colleagues Terence Percival, Graham Daniels, Diet Ostry, and John Deane developed a key patent used in Wi-Fi as a by-product of a Commonwealth Scientific and Industrial Research Organisation (CSIRO) research project, “a failed experiment to detect exploding mini black holes the size of an atomic particle”. Dr O’Sullivan and his colleagues are credited with inventing Wi-Fi.In 1992 and 1996, CSIRO obtained patents for a method later used in Wi-Fi to “unsmear” the signal. The first version of the 802.11 protocol was released in 1997, and provided up to 2 Mbit/s link speeds. This was updated in 1999 with 802.11b to permit 11 Mbit/s link speeds, and this proved to be popular. In 1999, the Wi-Fi Alliance formed as a trade association to hold the Wi-Fi trademark under which most products are sold. Wi-Fi uses a large number of patents held by many different organizations.In April 2009,14 technology companies agreed to pay CSIRO $1 billion for infringements on CSIRO patents. This led to Australia labeling Wi-Fi as an Australian invention,though this has been the subject of some controversy. CSIRO won a further $220 million settlement for Wi-Fi patent-infringements in 2012 with global firms in the United States required to pay the CSIRO licensing rights estimated to be worth an additional $1 billion in royalties.In 2016, the wireless local area network Test Bed was chosen as Australia’s contribution to the exhibition A History of the World in 100 Objects held in the National Museum of Australia.




The IEEE does not test equipment for compliance with their standards. The non-profit Wi-Fi Alliance was formed in 1999 to fill this void — to establish and enforce standards for interoperability and backward compatibility, and to promote wireless local-area-network technology. As of 2010, the Wi-Fi Alliance consisted of more than 375 companies from around the world.The Wi-Fi Alliance enforces the use of the Wi-Fi brand to technologies based on the IEEE 802.11 standards from the IEEE. This includes wireless local area network (WLAN) connections, device to device connectivity (such as Wi-Fi Peer to Peer aka Wi-Fi Direct), Personal area network (PAN), local area network (LAN) and even some limited wide area network (WAN) connections. Manufacturers with membership in the Wi-Fi Alliance, whose products pass the certification process, gain the right to mark those products with the Wi-Fi logo. Specifically, the certification process requires conformance to the IEEE 802.11 radio standards, the WPA and WPA2 security standards, and the EAP authentication standard. Certification may optionally include tests of IEEE 802.11 draft standards, interaction with cellular-phone technology in converged devices, and features relating to security set-up, multimedia, and power-saving.




Not every Wi-Fi device is submitted for certification. The lack of Wi-Fi certification does not necessarily imply that a device is incompatible with other Wi-Fi devices. The Wi-Fi Alliance may or may not sanction derivative terms, such as Super Wi-Fi, coined by the US Federal Communications Commission (FCC) to describe proposed networking in the UHF TV band in the US. Wi-Fi technology may be used to provide Internet access to devices that are within the range of a wireless network that is connected to the Internet. The coverage of one or more interconnected access points (hotspots) can extend from an area as small as a few rooms to as large as many square kilometres. Coverage in the larger area may require a group of access points with overlapping coverage. For example, public outdoor Wi-Fi technology has been used successfully in wireless mesh networks in London, UK. An international example is Fon. Wi-Fi provides service in private homes, businesses, as well as in public spaces at Wi-Fi hotspots set up either free-of-charge or commercially, often using a captive portal webpage for access. Organizations and businesses, such as airports, hotels, and restaurants, often provide free-use hotspots to attract customers. Enthusiasts or authorities who wish to provide services or even to promote business in selected areas sometimes provide free Wi-Fi access. Routers that incorporate a digital subscriber line modem or a cable modem and a Wi-Fi access point, often set up in homes and other buildings, provide Internet access and internetworking to all devices connected to them, wirelessly or via cable. Similarly, battery-powered routers may include a cellular Internet radio modem and Wi-Fi access point. When subscribed to a cellular data carrier, they allow nearby Wi-Fi stations to access the Internet over 2G, 3G, or 4G networks using the tethering technique. Many smartphones have a built-in capability of this sort, including those based on Android, BlackBerry, Bada, iOS (iPhone), Windows Phone and Symbian, though carriers often disable the feature, or charge a separate fee to enable it, especially for customers with unlimited data plans. “Internet packs” provide standalone facilities of this type as well, without use of a smartphone; examples include the MiFi- and WiBro-branded devices. Some laptops that have a cellular modem card can also act as mobile Internet Wi-Fi access points. Wi-Fi also connects places that normally don’t have network access, such as kitchens and garden sheds. Google is intending to use the technology to allow rural areas to enjoy connectivity by utilizing a broad mix of projection and routing services. Google also intends to bring connectivity to Africa and some Asian lands by launching blimps that will allow for internet connection with Wi-Fi technology. The 802.11 standard provides several distinct radio frequencies ranges for use in Wi-FI communications: 900 MHz 2.4 GHz, 3.6 GHz, 4.9 GHz, 5 GHz, 5.9 GHz and 60 GHz bands. Each range is divided into a multitude of channels. Countries apply their own regulations to the allowable channels, allowed users and maximum power levels within these frequency ranges.




The ISM band ranges are also often used. 802.11b and 802.11g use the 2.4 GHz ISM band, operating in the United States under Part 15 Rules and Regulations. Because of this choice of frequency band, 802.11b and g equipment may occasionally suffer interference from microwave ovens, cordless telephones, USB3.0 hubs, and Bluetooth devices. Spectrum assignments and operational limitations are not consistent worldwide: Australia and Europe allow for an additional two channels (12, 13) beyond the 11 permitted in the United States for the 2.4 GHz band, while Japan has three more (12–14). In the US and other countries, 802.11a and 802.11g devices may be operated without a license, as allowed in Part 15 of the FCC Rules and Regulations. A Wi-Fi signal occupies five channels in the 2.4 GHz band. Any two channel numbers that differ by five or more, such as 2 and 7, do not overlap. The oft-repeated adage that channels 1, 6, and 11 are the only non-overlapping channels is, therefore, not accurate. Channels 1, 6, and 11 are the only group of three non-overlapping channels in North America and the United Kingdom. In Europe and Japan using Channels 1, 5, 9, and 13 for 802.11g and 802.11n is recommended. 802.11a uses the 5 GHz U-NII band, which, for much of the world, offers at least 23 non-overlapping channels rather than the 2.4 GHz ISM frequency band, where adjacent channels overlap. As the 802.11 specifications evolved to support higher throughput, the bandwidth requirements also increased to support them. 802.11n uses double the radio spectrum/bandwidth compared to 802.11a or 802.11g.76 This means there can be only one 802.11n network on the 2.4 GHz band at a given location, without interference to/from other WLAN traffic. 802.11n can also be set to limit itself to 20 MHz bandwidth to prevent interference in dense community. Wi-Fi connections can be disrupted or the Internet speed lowered by having other devices in the same area. Wi-Fi protocols are designed to share channels reasonably fairly, and will often work with little to no disruption. However, many 2.4 GHz 802.11b and 802.11g access-points default to the same channel on initial startup, contributing to congestion on certain channels. Wi-Fi pollution, or an excessive number of access points in the area, can prevent access and interfere with other devices’ use of other access points as well as with decreased signal-to-noise ratio (SNR) between access points. In addition interference can be caused by overlapping channels in the 802.11g/b spectrum. These issues can become a problem in high-density areas, such as large apartment complexes or office buildings with many Wi-Fi access points. Additionally, other devices use the 2.4 GHz band: microwave ovens, ISM band devices, security cameras, ZigBee devices, Bluetooth devices, video senders, cordless phones, baby monitors,and, in some countries, amateur radio, all of which can cause significant additional interference. It is also an issue when municipalities or other large entities seek to provide large area coverage. These bands are allowed to be used with low power transmitters, without requiring a license and with few restrictions. However, while unintended interference is common, users that have been found to knowingly cause deliberate interference to other users have been handed large fines. The IEEE 802.11 standard is a set of media access control (MAC) and physical layer (PHY) specifications for implementing wireless local area network (WLAN) computer communication in the 2.4, 3.6, 5, and 60 GHz frequency bands. They are created and maintained by the IEEE LAN/MAN Standards Committee (IEEE 802). The base version of the standard was released in 1997, and has had subsequent amendments. The standard and amendments provide the basis for wireless network products using the Wi-Fi brand. While each amendment is officially revoked when it is incorporated in the latest version of the standard, the corporate world tends to market to the revisions because they concisely denote capabilities of their products. As a result, in the market place, each revision tends to become its own standard.

Comment PLZ