What is Compact Disc ?

How CD’s Easily Protect Our Important Data



Compact Disc which is very well known as CD is a digital optical disc data storage format that was co-developed by Philips and Sony and released in 1982. The format was originally developed to store and play only sound recordings but was later adapted for storage of data. Standard CDs have a diameter of 120 millimetres and can hold up to about 80 minutes of uncompressed audio or about 700 MiB of data. The Mini CD has various diameters ranging from 60 to 80 millimetres; they are sometimes used for CD singles, storing up to 24 minutes of audio, or delivering device drivers. From the early 2000s CDs were increasingly being replaced by other forms of digital storage and distribution, with the result that by 2010 the number of audio CDs being sold in the U.S. had dropped about 50% from their peak; however, they remained one of the primary distribution methods for the music industry.American inventor James T. Russell has been credited with inventing the first system to record digital information on an optical transparent foil that is lit from behind by a high-power halogen lamp. In 1974, Lou Ottens, director of the audio division of Philips, started a small group with the aim to develop an analog optical audio disc with a diameter of 20 cm and a sound quality superior to that of the vinyl record. However, due to the unsatisfactory performance of the analog format, two Philips research engineers recommended a digital format in March 1974. In 1977, Philips then established a laboratory with the mission of creating a digital audio disc. The diameter of Philips’s prototype compact disc was set at 11.5 cm, the diagonal of an audio cassette. Heitaro Nakajima, who developed an early digital audio recorder within Japan’s national public broadcasting organization NHK in 1970, became general manager of Sony’s audio department in 1971. His team developed a digital PCM adaptor audio tape recorder using a Betamax video recorder in 1973. After this, in 1974 the leap to storing digital audio on an optical disc was easily made. Sony first publicly demonstrated an optical digital audio disc in September 1976. A year later, in September 1977, Sony showed the press a 30 cm disc that could play 60 minutes of digital audio using MFM modulation. In September 1978, the company demonstrated an optical digital audio disc with a 150-minute playing time, 44,056 Hz sampling rate, 16-bit linear resolution, and cross-interleaved error correction code—specifications similar to those later settled upon for the standard compact disc format in 1980. Technical details of Sony’s digital audio disc were presented during the 62nd AES Convention, held on 13–16 March 1979, in Brussels. Sony’s AES technical paper was published on 1 March 1979. A week later, on 8 March, Philips publicly demonstrated a prototype of an optical digital audio disc at a press conference called “Philips Introduce Compact Disc” in Eindhoven, Netherlands. Sony executive Norio Ohga, later CEO and chairman of Sony, and Heitaro Nakajima were convinced of the format’s commercial potential and pushed further development despite widespread skepticism. As a result, in 1979, Sony and Philips set up a joint task force of engineers to design a new digital audio disc. Led by engineers Kees Schouhamer Immink and Toshitada Doi, the research pushed forward laser and optical disc technology. After a year of experimentation and discussion, the task force produced the Red Book CD-DA standard. First published in 1980, the standard was formally adopted by the IEC as an international standard in 1987, with various amendments becoming part of the standard in 1996. Philips coined the term compact disc in line with another audio product, the Compact Cassette, and contributed the general manufacturing process, based on video LaserDisc technology. Philips also contributed eight-to-fourteen modulation, which offers a certain resilience to defects such as scratches and fingerprints, while Sony contributed the error-correction method, CIRC.



Sony Cd


The Compact Disc Story, told by a former member of the task force, gives background information on the many technical decisions made, including the choice of the sampling frequency, playing time, and disc diameter. The task force consisted of around four to eight persons, though according to Philips, the compact disc was “invented collectively by a large group of people working as a team.” The Japanese launch was followed in March 1983 by the introduction of CD players and discs to Europe and North America. This 1983 event is often seen as the “Big Bang” of the digital audio revolution. The new audio disc was enthusiastically received, especially in the early-adopting classical music and audiophile communities, and its handling quality received particular praise. As the price of players gradually came down, and with the introduction of the portable Discman the CD began to gain popularity in the larger popular and rock music markets. One of the first CD markets was devoted to reissuing popular music whose commercial potential was already proven. An advantage of the format was the ability to produce and market boxed sets and multi-volume collections.The first artist to sell a million copies on CD was Dire Straits, with their 1985 album Brothers in Arms. The first major artist to have his entire catalogue converted to CD was David Bowie, whose first fourteen studio albums of sixteen were made available by RCA Records in February 1985, along with four greatest hits albums; his fifteenth and sixteenth albums had already been issued on CD by EMI Records in 1983 and 1984, respectively. On February 26, 1987, the first four UK albums by The Beatles were released in mono on compact disc. In 1988, 400 million CDs were manufactured by 50 pressing plants around the world. The CD was planned to be the successor of the vinyl record for playing music, rather than primarily as a data storage medium. From its origins as a musical format, CDs have grown to encompass other applications. In 1983, following the CD’s introduction, Immink and Braat presented the first experiments with erasable compact discs during the 73rd AES Convention. In June 1985, the computer-readable CD-ROM and, in 1990, CD-Recordable were introduced, also developed by both Sony and Philips. Recordable CDs were a new alternative to tape for recording music and copying music albums without defects introduced in compression used in other digital recording methods. Other newer video formats such as DVD and Blu-ray use the same physical geometry as CD, and most DVD and Blu-ray players are backward compatible with audio CD. By the early 2000s, the CD player had largely replaced the audio cassette player as standard equipment in new automobiles, with 2010 being the final model year for any car in the United States to have a factory-equipped cassette player. With the increasing popularity of portable digital audio players, such as mobile phones, and solid state music storage, CD players are being phased out of automobiles in favor of minijack auxiliary inputs, wired connection to USB devices and wireless Bluetooth connection. Meanwhile, with the advent and popularity of Internet-based distribution of files in lossily-compressed audio formats such as MP3, sales of CDs began to decline in the 2000s. For example, between 2000 and 2008, despite overall growth in music sales and one anomalous year of increase, major-label CD sales declined overall by 20%, although independent and DIY music sales may be tracking better according to figures released 30 March 2009, and CDs still continue to sell greatly. As of 2012, CDs and DVDs made up only 34 percent of music sales in the United States. By 2015, only 24% of music in the United States was purchased on physical media, ⅔ of this consisting of CDs; however, in the same year in Japan, over 80% of music was bought on CDs and other physical formats. Despite the rapidly declining sales year-over-year, the pervasiveness of the technology remained for a time, with companies placing CDs in pharmacies, supermarkets, and filling station convenience stores targeting buyers least able to utilize Internet-based distribution. However, in 2018, Best Buy and Target Corporation both announced plans to decrease their focus on CD sales.





Audio CD:

The logical format of an audio CD is described in a document produced in 1980 by the format’s joint creators, Sony and Philips. The document is known colloquially as the Red Book CD-DA after the colour of its cover. The format is a two-channel 16-bit PCM encoding at a 44.1 kHz sampling rate per channel. Four-channel sound was to be an allowable option within the Red Book format, but has never been implemented. Monaural audio has no existing standard on a Red Book CD; thus, mono source material is usually presented as two identical channels in a standard Red Book stereo track; an MP3 CD, however, can have audio file formats with mono sound.

Super Audio CD:

Super Audio CD (SACD) is a high-resolution read-only optical audio disc format that was designed to provide higher fidelity digital audio reproduction than the Red Book. Introduced in 1999, it was developed by Sony and Philips, the same companies that created the Red Book. SACD was in a format war with DVD-Audio, but neither has replaced audio CDs. The SACD standard is referred to the Scarlet Book standard.



It is a format used to store music-performance data, which upon playback is performed by electronic instruments that synthesize the audio. Hence, unlike the original Red Book CD-DA, these recordings are not digitally sampled audio recordings. The CD-MIDI format is defined as an extension of the original Red Book.




For the first few years of its existence, the CD was a medium used purely for audio. However, in 1988, the Yellow Book CD-ROM standard was established by Sony and Philips, which defined a non-volatile optical data computer data storage medium using the same physical format as audio compact discs, readable by a computer with a CD-ROM drive.

Video CD (VCD):


It is a standard digital format for storing video media on a CD. VCDs are playable in dedicated VCD players, most modern DVD-Video players, personal computers, and some video game consoles.

Super Video CD:

It is a format used for storing video media on standard compact discs. SVCD was intended as a successor to VCD and an alternative to DVD-Video and falls somewhere between both in terms of technical capability and picture quality.

Photo CD:

It is a system designed by Kodak for digitizing and storing photos on a CD. Launched in 1992, the discs were designed to hold nearly 100 high-quality images, scanned prints and slides using special proprietary encoding.


The Philips Green Book specifies a standard for interactive multimedia compact discs designed for CD-i players (1993). CD-i discs can contain audio tracks which can be played on regular CD players, but CD-i discs are not compatible with most CD-ROM drives and software.

CD-i Ready:

Philips defined a format similar to CD-i called CD-i Ready, which puts CD-i software and data into the pregap of track 1. This format was supposed to be more compatible with older audio CD players.

Enhanced Music CD (CD+):

Enhanced Music CD, also known as CD Extra or CD Plus, is a format which combines audio tracks and data tracks on the same disc by putting audio tracks in a first session and data in a second session.


It is the hybrid of a standard audio CD and the vinyl record. The vinyl layer on the disc’s label side can hold approximately three minutes of music.

Recordable CD:

Recordable Compact Discs, CD-Rs, are injection-molded with a “blank” data spiral. A photosensitive dye is then applied, after which the discs are metalized and lacquer-coated. The write laser of the CD recorder changes the colour of the dye to allow the read laser of a standard CD player to see the data, just as it would with a standard stamped disc. The resulting discs can be read by most CD-ROM drives and played in most audio CD players. CD-Rs follow the Orange Book standard.

ReWritable CD:

CD-RW is a re-recordable medium that uses a metallic alloy instead of a dye. The write laser in this case is used to heat and alter the properties (amorphous vs. crystalline) of the alloy, and hence change its reflectivity. A CD-RW does not have as great a difference in reflectivity as a pressed CD or a CD-R, and so many earlier CD audio players cannot read CD-RW discs, although most later CD audio players and stand-alone DVD players can. CD-RWs follow the Orange Book standard.

CD Speed:

Due to technical limitations, the original ReWritable CD could be written no faster than 4x speed. High Speed ReWritable CD has a different design, which permits writing at speeds ranging from 4x to 12x. Original CD-RW drives can only write to original ReWritable CDs. High Speed CD-RW drives can typically write to both original ReWritable CDs and High Speed ReWritable CDs. Both types of CD-RW discs can be read in most CD drives. Higher speed CD-RW discs, Ultra Speed (16x to 24x write speed) and Ultra Speed+ (32x write speed) are now available.

Comment PLZ